

SpaceCube: A Family Of Reconfigurable Hybrid On-Board Science Data Processors

Thomas P. Flatley Head, Science Data Processing Branch Software Engineering Division NASA - Goddard Space Flight Center Greenbelt, MD USA

NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2012) Nuremberg/Erlangen, Germany June 25-28, 2012

The Challenge

The next generation of NASA science missions will require "order of magnitude" improvements in on-board computing power

Mission Enabling Science Algorithms & Applications

- Real-time Wavefront Sensing and Control
- On-Board Data Volume Reduction
- Real-time Image Processing
- Autonomous Operations
- On-Board Product Generation
- Real-time Event / Feature
 Detection

- Real-time "Situational Awareness"
- Intelligent Data Compression
- Real-time Calibration /
- Correction
- On-Board Classification
- Inter-platform Collaboration

Our Approach

- The traditional path of developing radiation hardened flight processor will not work ... they are always one or two generations behind
- Science data does not need to be 100% perfect, 100% of the time, especially if you can collect 100x MORE DATA using radiation tolerant* processing components
- Accept that radiation induced upsets will happen occasionally ... and just deal with them
- Target 10x to 100x improvement in "MIPS/watt"

*Radiation tolerant – susceptible to radiation induced upsets (bit flips) but not radiation induced destructive failures (latch-up)

Our Solution

SpaceCube: a high performance reconfigurable science data processor based on Xilinx Virtex FPGAs

- Hybrid processing ... CPU, DSP and FPGA logic
- Integrated "radiation upset mitigation" techniques
- SpaceCube "core software" infrastructure
- Small "critical function" manager/watchdog
- Standard interfaces

SpaceCube Family Overview

Unit	Mission	Notes	Specs	Stats	Status
SpaceCube 1.0a	Hubble Servicing Mission 4	Relative Navigation Sensors Experiment STS-125 May 2009	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 37W	2009 Flight
SpaceCube 1.0b	MISSE-7 (ISS)	added RS-485, RHBS, STS-129 Nov 2009	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 32W	In Flight
SpaceCube 1.5	SMART (DoD/ORS)	adds GigE & SATA, commercial parts, sounding rocket flight	4"x4" card (1) Virtex5	Size: 5"x5"x4" Wt: 4 lbs Pwr: < 20W	2011 Flight
SpaceCube 1.0c	Argon Ground Demonstration	Original RNS unit, w/added 1553 & Ethernet	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 40W	Software Development
SpaceCube 1.0d	STP-H4 (ISS)	CIB Experiment Interface w/added 1553 & Ethernet	4"x4" card (2) Virtex4	Size: 5"x5"x7" Wt: 7.5 lbs Pwr: 40W	2013 Flight
SpaceCube 2.0	Earth/Space Science Exploration missions ISE 2.0 (ISS)	Std 3U form factor, GigE, SATA, Spacewire, cPCI	4"x6" card (2) Virtex5 SIRF	Size: 5"x5"x7" Wt: < 10 lbs Pwr: 15-20W	Under Development (ISE 2.0 2013 Flight)
SpaceCube 2.0 Mini	CubeSats, Sounding Rocket, UAV IPEX Cubesat	"Mini" version of SpaceCube 2.0, CubeSat form factor	2.5"x2.5" cards (1) Virtex5/SIRF (1) Aeroflex Rad-Hard FPGA	Size: 3.5"x3.5"x3.5" Wt: < 3 lbs Pwr: 5-15W	Under Development (IPEX 2014 Flight)

Processor Comparison

	MIPS	Power	MIPS/	
			W	
MIL-STD-1750A	3	15W	0.2	
RAD6000	35	10-20W	2.331	
RAD750	300	10-20W	202	
SPARC V8	86	1W ₃	86 ₃	
LEON 3FT	60	3-5W ₃	15 ₃	
GSFC SpaceCube 1.0	3000	5-15W	4004	
GSFC SpaceCube 2.0	5000	10-20W	500 ₅	

Notes:

1 – typical, 35 MIPS at 15 watts

- 2 typical, 300 MIPS at 15 watts
- 3 processor device only ... total board power TBD
- 4 3000 MIPS at 7.5 watts (measured)
- 5 5000 MIPS at 10 watts (calculated)

Current SpaceCube Systems

On-Board Image Processing

STS-125 Payload Bay

Flight Image

RNS Tracking Solution

Short Range Camera on Deploy

Flight Image

RNS Tracking Solution

HST-SM4

GSFC SpaceCube 1.0a - Hubble SM 4 (May 2009):

- Autonomous Rendezvous and Docking Experiment
- Hosted camera AGC and two Pose algorithms

MISSE7/8 SpaceCube

GSFC SpaceCube 1.0b (Nov 2009): • "Radiation Hardened by Software" Experiment (RHBS) • Autonomous Landing Application

• Collaboration with NRL and the DoD Space Test Program (STP)

MISSE7/8

Orbit Days in orbit Total SEUs Total Errors

ISS 900+ 175+ 0

On-Orbit Upset Locations

On-Orbit Upset Locations

SMART Real-time Video

SpaceCube 1.5 - SMART GigE Camera 1 Real-time Downlink at 6 fps – clip NASA Wallops Flight Facility - June 10, 2011

On-Board Data Reduction

On-Board Data Reduction (cont)

RUSHMAPS IRAD Results

- Classification
- Product Generation
- Event Detection
- Atmospheric Correction

HyspIRI SpaceCube IPM Testbed

Argon AR&D Test Payload

IR Camera

Neptec TriDAR

Estimated Mass: 140 lb

> Rough Size: 25"x32"x14"

Camera

Argon Payload Assembly

GSFC Satellite Servicing Lab

Testing with simulated 6-DOF motion of Argon and Target

- Rotopod and FANUC motion platforms simulate target-sensor dynamics
- Up to 13 m separation possible

Testing conducted at GSFC in January-February 2012

- Motion includes closed-loop approach and non-cooperative "tumble"
- Open loop testing to characterize sensor/algorithm performance
- Closed-loop tests evaluate end-to-end system (sensors, algorithms, control law) in real time

SpaceCube 2.0 Prototype

Spacewire / LVDS / MGT / GigE / Mission Unique High-speed

Standard 3U Card Form Factor Nominal Box Level Parameters: Size 5"x5"x7", Weight 10-15 lbs, Power 10-20 watts

SpaceCube Core Software

Operating System Abstraction Layer

Operating System (Linux, RTEMS, VxWorks, etc)

Hardware abstraction layer

STP-H4 is a DoD Space Test Program payload/experiment pallet on the ISS

STP-H4 / ISE 2.0 Location & FOV

ISS Flying Towards You

NASA

Image Credit: DoD Space Test Program

NASA Camera 1 – SpaceCube Earth View, 8° FOV (35mm lens, ~40m/pixel) Manta G-125, 1280 x 960 px, up to 30 fps

+

20 mi 50 km Camera 2 – SpaceCube Earth View, 32° FOV (8.5mm lens, ~175m/pixel) Manta G-125, 1280 x 960 px, up to 30 fps

20 mi 50 km

20 mi 50 km Camera 3 – SpaceCube Earth View, 53° FOV (6mm lens, ~300m/pixel) Manta G-125, 1280 x 960 px, up to 30 fps

GODDARD SPACE FLIGHT CENTER

Image Credit: DoD Space Test Program

STP-H4 as of 23 May 2012

Image Credit: DoD Space Test Program Photo credit: DoD Space Test Program **ISE 2.0 Camera Box** GLADIS and MARS Main Assembly **ISE 2.0 ISE 2.0** ISE 2.0 Power **Distribution Box** SpaceCube 2.0 EHD Plate

CubeSats: IPEX & TechCube 1

SpaceCube "Mini"

......

...............

.

•

.

SpaceCube "Mini" for IPEX

The SpaceCube Team

tom.flatley@nasa.gov

http://en.wikipedia.org/wiki/SpaceCube

http://gsfctechnology.gsfc.nasa.gov/SpaceCube.htm

http://esto.nasa.gov/conferences/estf2011/ papers/Flatley_ESTF2011.pdf